On the geometry of combinatorial games: A renormalization approach
نویسندگان
چکیده
We describe the application of a physics-inspired renormalization technique to combinatorial games. Although this approach is not rigorous, it allows one to calculate detailed, probabilistic properties of the geometry of the P-positions in a game. The resulting geometric insights provide explanations for a number of numerical and theoretical observations about various games that have appeared in the literature. This methodology also provides a natural framework for several new avenues of research in combinatorial games, including notions of “universality,” “sensitivity-to-initial-conditions,” and “crystal-like growth,” and suggests surprising connections between combinatorial games, nonlinear dynamics, and physics. We demonstrate the utility of this approach for a variety of games— three-row Chomp, 3-D Wythoff’s game, Sprague–Grundy values for 2-DWythoff’s game, and Nim and its generalizations—and show how it explains existing results, addresses longstanding questions, and generates new predictions and insights.
منابع مشابه
Scaling, Renormalization, and Universality in Combinatorial Games: The Geometry of Chomp
We develop a new approach to combinatorial games (e.g., chess, Go, checkers, Chomp, Nim) that unveils connections between such games and nonlinear phenomena commonly seen in nature: scaling behaviors, complex dynamics and chaos, growth and aggregation processes. Using the game of Chomp (as well as variants of the game of Nim) as prototypes, we discover that the game possesses an underlying geom...
متن کاملA NUMERICAL RENORMALIZATION GROUP APPROACH FOR AN ELECTRON-PHONON INTERACTION
A finite chain calculation in terms of Hubbard X-operators is explored by setting up a vibronic Harniltonian. The model conveniently transformed into a form so that in the case of strong coupling a numerical renormalization group approach is applicable. To test the technique, a one particle Green function is calculated for the model Harniltonian
متن کاملNonlinear dynamics in combinatorial games: renormalizing Chomp.
We develop a new approach to combinatorial games that reveals connections between such games and some of the central ideas of nonlinear dynamics: scaling behaviors, complex dynamics and chaos, universality, and aggregation processes. We take as our model system the combinatorial game Chomp, which is one of the simplest in a class of "unsolved" combinatorial games that includes Chess, Checkers, ...
متن کاملA numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators
Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...
متن کاملA convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کامل